Odpowiedź :
Odpowiedź:
Funkcja jest rosnąca dla x ∈ (9, ∞).
Maksymalnym przedziałem jest x ∈ <9, ∞)
Szczegółowe wyjaśnienie:
Postać kanoniczna funkcji kwadratowej:
f(x) = a(x - p)² + q
(p, q) - współrzędne wierzchołka
Wykresem funkcji kwadratowej jest parabola.
Gdy a > 0, to ramiona paraboli są skierowane w górę. Wówczas funkcja jest malejąca w przedziale (-∞, p), a rosnąca w przedziale (p, ∞).
Gdy a < 0, to ramiona paraboli są skierowane w dół. Wówczas funkcja jest rosnąca w przedziale (-∞, p), a malejąca w przedziale (p, ∞).
Mamy funkcję:
f(x) = 5(x - 9)² + 13
a = 5 > 0 - ramiona paraboli skierowane w górę
p = 9