Odpowiedź :
[tex]f(x) = \frac{2x^{2}-7x+3}{3x^{2}-14x+15}[/tex]
Dziedzina funkcji f:
Mianownik musi być różny od zera:
[tex]3x^{2}-14x+15 \neq 0\\\\a = 3, \ b = -14, \ c = 15\\\\\Delta = b^{2}-4ac = (-14)^{2}-4\cdot3\cdot15 = 196 - 180 = 16\\\\\sqrt{\Delta} = \sqrt{16} = 4\\\\x_1 = \frac{-b-\sqrt{\Delta}}{2a} = \frac{14-4}{2\cdot3} = \frac{10}{6}= \frac{5}{3}\\\\x_2 = \frac{-b+\sqrt{\Delta}}{2a} = \frac{14+4}{6} = \frac{28}{6} = \frac{14}{5}\\\\\boxed{D = R \setminus\{\frac{5}{3},\frac{14}{3}\}}[/tex]
[tex]f(x) = 1\\\\\frac{2x^{2}-7x+3}{3x^{2}-14x+15} = 1 \ \ \ |\cdot(3x^{2}-14x+15})\\\\2x^{2}-7x+3 = 3x^{2}-14x+15\\\\2x^{2}-3x^{2}-7x+14x+3-15 = 0\\\\-x^{2}+7x-12 = 0 \ \ \ |\cdot(-1)\\\\x^{2}-7x+12 = 0\\\\\Delta = b^{2}-4ac = (-7)^{2}-4\cdot1\cdot12 = 49 - 48 = 1\\\\\sqrt{\Delta} = \sqrt{1} = 1\\\\x_1 = \frac{7-1}{2} = \frac{6}{2} = 3\\\\x_2 = \frac{7+1}{2} = \frac{8}{2} = 4\\\\\boxed{x \in \{3,4\}}[/tex]