Odpowiedź:
[tex]\frac{2x-2}{x+5}=x-1\\\\x+5\neq 0\\\\x\neq -5\\\\D=R\setminus\left\{-5\right\}\\\\\\\frac{2x-2}{x+5}=x-1\\\\2x-2=(x-1)(x+5)\\\\2x-2=x^2+5x-x-5\\\\2x-2=x^2+4x-5\\\\2x-2-x^2-4x+5=0\\\\-x^2-2x+3=0\ \ /\cdot(-1)\\\\x^2+2x-3=0\\\\a=1\ \ ,\ \ b=2\ \ ,\ \ c=-3\\\\\Delta=b^2-4ac\\\\\Delta=2^2-4\cdot1\cdot(-3)=4+12=16\\\\\sqrt{\Delta}=\sqrt{16}=4[/tex]
[tex]x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-2-4}{2\cdot1}=\frac{-6}{2}=-3\ \ \ \ \in D\\\\x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-2+4}{2\cdot1}=\frac{2}{2}=1\ \ \ \ \in D[/tex]