Olimba
Rozwiązane

wpisz brakujący wykładnik:
3 potęga 12 : 27 = 3???

w ułamku 8/2, 8 potęga 4, 2 potęga 3 = 2???​



Odpowiedź :

[tex]\frac{3^{12}}{27} = \frac{3^{12}}{3^{3}} = 3^{12-3} = 3^{9}\\\\\\\frac{8^{4}}{2^{3}} = \frac{(2^{3})^{4}}{2^{3}} = \frac{2^{3\cdot4}}{2^{3}} = \frac{2^{12}}{2^{3}} = 2^{12-3} = 2^{9}[/tex]

Wyjaśnienie:

DZIELENIE POTĘĘG O TEJ SAMEJ PODSTAWIE

[tex]a^{m}:a^{n} = a^{m-n}[/tex]

Iloraz potęg o tej samej podstawie a, różnej od zera, jest równy potędze o podstawie a i wykładniku równym różnicy wykładników dzielnej i dzielnika.

POTĘGA POTĘGI

[tex](a^{n})^{m} = a^{n\cdot m[/tex]

Potęga potęgi jest równa potędze o tej samej podstawie a i wykładniku równym iloczynowi danych wykładników n i m.