Odpowiedź:
u(x) = x² *(3 x² -2 x + [tex]\frac{1}{3}[/tex] ) =3 x²*( x - [tex]\frac{1}{3}[/tex])²
bo Δ = (-2)² - 4*3*[tex]\frac{1}{3}[/tex] = 4 - 4 = 0
x = [tex]\frac{2}{6} = \frac{1}{3}[/tex]
p(x) = [tex]x^6 - 1[/tex] = (x³ - 1)*(x³ + 1) = ( x - 1)*(x² + x + 1)*( x + 1)*(x² - x + 1) =
= (x -1)*( x + 1)*(x² +x + 1)*( x² - x + 1)
więc w(x) = 3 x²*( x - [tex]\frac{1}{3}[/tex])² *( x - 1)*(x + 1)*( x² + x + 1)*( x² - x + 1)
St w(x) = 10
S = w(1) = 0
Szczegółowe wyjaśnienie: