Odpowiedź :
Odpowiedź:
zad 1
a₁= 5
r = 3
a₆ = a₁ + 5r = 5 + 5 * 3 = 5 + 15 = 20
S₆ = (a₁ + a₆) * 6/2 = (5 + 20) * 3 = 25 * 3 = 75
zad 2
a₁ = 4
q = 1/2
a₅ = a₁q⁴ = 4 * (1/2)⁴ = 4 * 1/16 = 1/4
S₄ = a₁(1 - q⁴)/(1 - q) = 4(1 - 1/16)/(1 - 1/2) = (4 * 15/16)/(1/2) = 15/4 : 1/2 =
= 15/4 * 2 = 30/4 = 7 2/4 = 7 1/2
II sposób
a₁ = 4
a₂ = a₁q = 4 * 1/2 = 2
a₃ = a₂q = 2 * 1/2 = 1
a₄ = a₃q = 1 * 1/2 = 1/2
S₄ = a₁ + a₂ + a₃ + a₄ = 4 + 2 + 1 + 1/2 = 7 1/2
1.
[tex]a_1 = 5\\r = 3\\a_6 = ?\\S_6 = ?\\\\a_{n} = a_1+(n-1)\cdot r\\\\a_6 = 5 + 5\cdot3 = 5+15}=\boxed{20}[/tex]
[tex]S_{n} = \frac{a_1+a_{n}}{2}\cdot n\\\\S_6 = \frac{5+20}{2}\cdot6 = 25\cdot3 = \boxed{75}[/tex]
2.
[tex]a_1 = 4\\q = \frac{1}{2}\\a_5 = ?\\S_4 = ?\\\\a_{n} = a_1\cdot q^{n-1}\\\\a_5 = 4\cdot(\frac{1}{2})^{4} = 4\cdot\frac{1}{16} = \frac{4}{16} =\boxed{ \frac{1}{4}}[/tex]
[tex]S_{n} = a_1\cdot\frac{1-q^{n}}{1-q}\\\\S_{4} = 4\cdot\frac{1-(\frac{1}{2})^{4}}{1-\frac{1}{2}} =4\cdot\frac{\frac{16}{16}-\frac{1}{16}}{\frac{1}{2}} = 4\cdot\frac{\frac{15}{16}}{\frac{1}{2}} = 4\cdot\frac{15}{16}\cdot2 = \frac{8\cdot15}{16} = \frac{15}{2} = \boxed{7\frac{1}{2}}[/tex]