1) Wyprowadzenie wzoru na zależność stężenia od czasu dla reakcji I-rzędu:/
[tex]v = k \cdot c = \frac{-dc}{dt}\\kdt=\frac{-dc}{dc}\\\int\limits^t_0 kdt = -\int\limits^{c}_{c_{0}}\frac{dc}{c}\\k[t]\limits^t_0=-[lnc]\limits^{c}_{c_{0}}\\kt=lnc_{0}-lnc\\kt=ln\frac{c_{0}}{c}\\e^{kt}=\frac{c_{0}}{c}\\c=\frac{c_{0}}{e^{kt}}\\c=c_{0}\cdot e^{-kt}[/tex]
2) Wyprowadzenie wzoru na czas półtrwania:
[tex]c=\frac{1}{2}c_{0}\\kt=lnc_{0}-lnc=ln\frac{c_{0}}{c}\\kt=ln\frac{c_{0}}{\frac{1}{2}c_{0}}\\kt=ln2\\t=\frac{ln2}{k} = t_{1/2}[/tex]
3) Obliczenie czasu półtrwania:
[tex]t = \frac{ln2}{4,72*10^{-5} \frac{1}{min}}\approx14700 \:min[/tex]
4) Obliczenie ile procent N₂O₅ pozostanie po 20 h:
[tex]20\:h=1200\:min\\c=c_{0}*e^{-4,72*10^{-5}\frac{1}{min}*1200 \:min}\\c\approx 0,945 c_{0}\\ \%N_{2}O_{5}=94,5 \%[/tex]
(-_-(-_-)-_-)