Odpowiedź :
Odpowiedź:
[tex]\huge\boxed{\frac{\partial f}{\partial x}=\dfrac{16x^5y^3\cos3y-60x^4y^3+15}{(4x^5y^3-5x)^2}}[/tex]
[tex]\boxed{\dfrac{\partial f}{\partial y}=\dfrac{12x^4y^3\sin3y-15x\sin3y-36x^3y^2+12x^4y^2\cos3y}{(4x^4y^3-5)^2}}[/tex]
Szczegółowe wyjaśnienie:
[tex]f(x,y)=\dfrac{3-x\cos3y}{4x^5y^3-5x}[/tex]
[tex]\dfrac{\partial f}{\partial x}=\dfrac{(3-x\cos3y)'(4x^5y^3-5x)-(3-x\cos3y)(4x^5y^3-5x)'}{(4x^5y^3-5x)^2}\\\\=\dfrac{-\cos3y(4x^5y^3-5x)-(3-x\cos3y)(20x^4y^3-5)}{(4x^5y^3-5x)^2}\\\\=\dfrac{-4x^5y^3\cos3y+5x\cos3y-60x^4y^3+15+20x^5y^3\cos3y-5x\cos3y}{(4x^5y^3-5x)^2}\\\\=\dfrac{16x^5y^3\cos3y-60x^4y^3+15}{(4x^5y^3-5x)^2}[/tex]
[tex]\dfrac{\partial f}{\partial y}=\dfrac{(3-x\cos3y)'(4x^5y^3-5x)-(3-x\cos3y)(4x^5y^3-5x)'}{(4x^5y^3-5x)^2}\\\\=\dfrac{x\sin3y\cdot3(4x^5y^3-5x)-(3-x\cos3y)(12x^5y^2)}{(4x^5y^3-5x)^2}\\\\=\dfrac{12x^6y^3\sin3y-15x^2\sin3y-36x^5y^2+12x^6y^2\cos3y}{(4x^5y^3-5x)^2}\\\\=\dfrac{x^2(12x^4y^3\sin3y-15x\sin3y-36x^3y^2+12x^4y^2\cos3y)}{x^2(4x^4y^3-5)^2}\\\\=\dfrac{12x^4y^3\sin3y-15x\sin3y-36x^3y^2+12x^4y^2\cos3y}{(4x^4y^3-5)^2}[/tex]
Użyte wzory:
[tex]\left(\dfrac{f(x)}{g(x)}\right)'=\dfrac{f'(x)g(x)-f(x)g'(x)}{[g(x)]^2}\\\\(ax)'=a\\\\(x^n)'=nx^{n-1}\\\\(\cos x)'=-\sin x\\\\\left\{f\left[g(x)\right]\right\}'=f'[g(x)]\cdot g'(x)[/tex]