Rozwiąż równanie X5 + 2x4 -4x3 -8x2 +3x +6=0 /za x są potęgi pełne rozwiązanie/​.



Odpowiedź :

[tex]x^{5}+2x^{4}-4x^{3}-8x^{2}+3x+6 = 0\\\\x^{4}(x+2) -4x^{2}(x+2)+3(x+2) = 0\\\\(x+2)(x^{4}-4x^{2}+3) = 0\\\\(x+2)(x^{4}-3x^{2}-x^{2}+3) = 0\\\\(x+2)[x^{2}(x^{2}-3)-(x^{2}-3)] = 0\\\\(x+2)(x^{2}-3)(x^{2}-1) = 0[/tex]

Korzystam ze wzoru uproszczonego mnożenia: (a + b)(a - b) = a² - b²

[tex](x+2)(x+\sqrt{3})(x-\sqrt{3})(x+1)(x-1) = 0\\\\x+2 = 0 \ \vee \ x+\sqrt{3} = 0 \ \vee \ x-\sqrt{3} = 0 \ \vee \ x+1 = 0 \ \vee \ x-1 = 0\\\\x=-2 \ \vee \ x = -\sqrt{3} \ \vee \ x = \sqrt{3} \ \vee \ x = -1 \ \vee \ x = 1\\\\\boxed{x \in \{-2,-\sqrt{3}, -1, \sqrt{3}, 1\}}[/tex]