Odpowiedź :
Odpowiedź:
2.
[tex]\frac{1}{x} - \frac{1}{y} = \frac{1}{z}[/tex] ( x ≠ 0, y ≠ 0, z ≠ 0 )
to
[tex]\frac{1}{x} = \frac{1}{y} + \frac{1}{z} = \frac{y + z}{y * z}[/tex]
zatem x = [tex]\frac{y * z}{y + z}[/tex] , y ≠ - z
Odp. D)
Szczegółowe wyjaśnienie:
1.
[tex]Pr = \frac{r+a}{b} \ \ \ |\cdot b\\\\Prb = r+a\\\\Prb-r = a\\\\r(Pb-1) = a \ \ \ |:(Pb-1)\\\\\boxed{r = \frac{a}{Pb-1}}\\\\Z:\\Pb-1\neq 0 \ \ \rightarrow \ \ Pb \neq 1[/tex]
[tex]\underline{Odp. \ b)}[/tex]
2.
[tex]\frac{1}{x}-\frac{1}{y} = \frac{1}{z}\\\\\frac{1}{x} = \frac{1}{z}+\frac{1}{y}\\\\\frac{1}{x} = \frac{y}{yz} + \frac{z}{yz}\\\\\frac{1}{x} = \frac{y+z}{yz}\\\\\boxed{x = \frac{yz}{y+z}}\\\\Z:\\y+z \neq 0 \ \ \rightarrow \ \ y \neq -z\\\\\underline{Odp. \ D.}[/tex]