[tex]\left \{ {{-2x+2y=y^2} \atop {2(y-3x)=6-y}} \right. \\\left \{ {{-2x=y^2-2y /:(-2)} \atop {2y-6x=6-y}} \right. \\\left \{ {{x=-\frac12y^2+y} \atop {2y+y=6x+6}} \right. \\\left \{ {{x=-\frac12y^2+y} \atop {3y=3(2x+2) /:3}} \right. \\\left \{ {{x=-\frac12y^2+y} \atop {y=2x+2}} \right. \\\\[/tex]
[tex]y=2*(-\frac12y^2+y)+2\\y=-y^2+2y+2\\y^2-2y+y-2=0\\y^2-y-2=0\\\Delta=(-1)^2-4*1*(-2)=1+8=9\\\sqrt{\Delta}=3\\y_1=\frac{1-3}{2}=\frac{-2}2=-1\\x_1=-\frac12*(-1)^2-1=-\frac12-1=-\frac32\\\\y_2=\frac{1+3}2=\frac42=2\\x_1=-\frac12*2^2+2=-\frac12*4+2=-2+2=0[/tex]
[tex]\text{Rozwiazaniami ukladu rownan sa punkty o wspolrzednych: } (-\frac32, -1), (0, 2)[/tex]