Odpowiedź :
Odpowiedź:
W(x) = [tex]x^4 - x^3 + m[/tex]
a) W(2) = 10 ⇔ [tex]2^4 - 2^3 + m = 10[/tex] ⇔ 16 - 8 + m = 10
m = 2
=====
b) W( [tex]\frac{1}{2} ) = - \frac{1}{16}[/tex] ⇔ ( [tex]\frac{1}{2} )^4 - ( \frac{1}{2} )^3 + m = - \frac{1}{16}[/tex] ⇔ [tex]\frac{1}{16} - \frac{2}{16} + m = - \frac{1}{16}[/tex]
m = 0
======
c) W( - 1) = 0 ⇔ (-1)[tex]^4 - ( - 1)^3 + m = 0[/tex] ⇔ 1 + 1 + m = 0 ⇔ 2 + m = 0
m = - 2
=======
d) W(3) = 0 ⇔ 3[tex]^4 - 3^3 + m = 0[/tex] ⇔ 81 - 27 + m = 0 ⇔ 54 + m = 0
m = - 54
========
Szczegółowe wyjaśnienie: