Odpowiedź :
Długość przekątnej prostopadłościanu: [tex]\sqrt{1730}[/tex] cm
Rysunek pomocniczy znajduje się w załączniku.
Długość przekątnej prostopadłościanu
Aby obliczyć przekątną prostopadłościanu musimy na początku obliczyć długość wysokości tego prostopadłościanu oraz długość przekątnej podstawy (zobacz rysunek).
Wiemy, że krawędzie prostopadłościanu to kolejne liczby naturalne, a suma ich długości to 72 cm.
Kolejne liczby naturalne możemy zapisać jako:
n, n+1, n+2
i zapisać ich sumę, która jest równa 72:
n + n + 1 + n + 2 = 72
3n + 3 = 72
3n = 69
n = 23
Wiemy, że pierwsza krawędź ma długość 23, zatem krawędź następna ma długość 24 i krawędź trzecia (wysokość) ma długość 25 (zobacz rysunek).
Do wyznaczenia przekątnej bryły potrzebujemy jeszcze długość przekątnej podstawy. Obliczymy ją z twierdzenia Pitagorasa:
23² + 24² = |CB|²
529 + 576 = |CB|²
|CB|² = 1105
|CB| = √1105
Mając obliczoną długość przekątnej podstawy oraz wysokość prostopadłościanu, jesteśmy w stanie wyliczyć przekątną prostopadłościanu:
25² + (√1105)² = d²
625 + 1105 = d²
d² = 1730
d = √1730 ≈ 41,59 cm
Przekątna prostopadłościanu ma długość √1730, czyli ok. 41, 59 cm.