Rozwiąż równanie wielomianowe: -4x^3 - 12x^2 + x + 3 >0

(x^2 - 25)^3 (5-x)^5 >=0.



Odpowiedź :

[tex]-4x^3-12x^2+x+3=-4x^2(x+3)+1(x+3)=(-4x^2+1)(x+3)=-(4x^2-1)(x+3)[/tex]

[tex]-(4x^2-1)(x+3) > 0\\\\-(4x^2-1) > 0\\-4x^2+1 > 0\\-4x^2 > -1\\4x^2 < 1 /:4\\x^2 < \frac14\\x < \frac12 \text{ v } x > -\frac12\\\\x\in(-\frac12; \frac12)\\\\-(x+3) > 0\\-x-3 > 0\\-x > 3 /*(-1)\\x < -3\\x\in(-\infty; -3)\\\\\text{Nierownosc jest spelniona dla sumy tych zbiorow, czyli } x\in(-\infty;-3)\cup(-\frac12; \frac12)[/tex]

[tex](x^2-25)^3(5-x)^5 \geq 0\\(x^2-25)^3 \geq 0\\\\x^2-25 \geq 0\\x^2 \geq 25\\x\geq 5 \text{ v } x \leq -5\\x\in(-\infty; -5\rangle\cup\langle5;\infty)[/tex]

[tex](5-x)^5\geq 0\\5-x\geq 0\\-x \geq -5 \\x\leq 5\\x\in(-\infty; 5\rangle\\\\x\in (-\infty; -5\rangle\cup \langle5; 5\rangle[/tex]