Wyznacz wielomian V zmiennej x opisujący objętość ostrosłupa prawidłowego czworokątnego o krawędzi podstawy a i wysokości h, gdzie:
[tex]a=x+3[/tex] i [tex]h=3(x^{2} -6x+9)[/tex]
Podaj dziedzinę funkcji V. Dla jakich wartości x zachodzi nierówność V(x)≤256?



Wyznacz Wielomian V Zmiennej X Opisujący Objętość Ostrosłupa Prawidłowego Czworokątnego O Krawędzi Podstawy A I Wysokości H Gdzie Texax3tex I Texh3x2 6x9tex Pod class=

Odpowiedź :

[tex]a=x+3\\h=3(x^2-6x+9)\\\\V=\frac13a^2*h\\\\V(x)=\frac{(x+3)^2*3(x^2-6x+9)}{3}\\V(x)=(x+3)^2(x^2-6x+9)\\V(x)=(x+3)^2(x-3)^2\\V(x)=((x+3)(x-3))^2\\V(x)=(x^2-3^2)^2\\V(x)=(x^2-9)^2\\\underline{\bold{V(x)=x^4-18x^2+81}}[/tex]

Dziedzina:

[tex]D_V : x\in R[/tex]

[tex]V(x) \leq 256\\x^4-18x^2+81 \leq 256\\(x^2-9)^2 \leq 256 /\sqrt{}\\x^2-9 \leq 16 /+9\\x^2 \leq 25\\x \leq 5 \text{ v } x \geq -5\\\underline{\boldx\in \langle-5; 5\rangle}}[/tex]

[tex]a = x+3 \ \ i \ \ h = 3(x^{2}-6x+9)\\\\V = \frac{1}{3}P_{p}\cdot h\\\\P_{P} = a^{2}\\\\V = \frac{1}{3}\cdot(x+3)^{2}\cdot3(x^{2}-6x+9)\\\\\boxed{V = (x+3)^{2}(x^{2}-6x+9)}[/tex]

Teraz wyznaczamy dziedzinę.

Wiadomo, że a > 0  i  h > 0, więc

[tex]x + 3 > 0\\\\\underline{x > -3}\\\\oraz\\\\3(x^{2}-6x+9) > 0 \ \ \ |:3\\\\(x^{2}-6x+9) > 0\\\\(x-3)^{2} > 0\\\\\underline{x \in R}[/tex]

bo (x - 3)² jest zawsze ≥ 0

Zatem dziedziną funkcji jest:

[tex]\boxed{D: \x \ \in \ (-3;+\infty)}[/tex]

[tex](x+3)^{2}(x-3)^{2} \leq 256\\\\((x+3)(x-3))^{2}\leq 256\\\\(x^{2}-9)^{2} \leq 256 \ \ \ |()\sqrt{}\\\\x^{2}-9 \leq 16\\\\x^{2}-9-16\leq 0\\\\x^{2}-25 \leq 0\\\\(x+5)(x-5) \leq 0[/tex]

(a + b)(a - b) = a² - b²

[tex]\boxed{x \in \langle -5;5\rangle}[/tex]