Kaenk32kaen
Rozwiązane

/ RUCH POSTĘPOWY RUCH OBROTOWY BRYŁY SZTYWNEJ Zadanie 3.2 Oblicz momenty bezwładności względem osi Ojį. Oį, Oį układów kulek (o pomijal nych rozmiarach) umieszczonych w wierzchołkach trójkąta równobocznego. Przyj * = 10 ³ kg, a » 2 cm. ° b) 0, () Uwaga & ornacza os prostopadłą do płaszczyzny rysunku.​



RUCH POSTĘPOWY RUCH OBROTOWY BRYŁY SZTYWNEJ Zadanie 32 Oblicz Momenty Bezwładności Względem Osi Ojį Oį Oį Układów Kulek O Pomijal Nych Rozmiarach Umieszczonych class=

Odpowiedź :

Z definicji, moment bezwładności:

[tex]I=\sum_{i}{m_ir_i^2}[/tex]

gdzie r_i jest odległością masy m_i od osi obrotu.

W naszym wypadku mamy trzy jednakowe masy

[tex]I=m\sum_{i=1}^3{r_i^2}[/tex]

a)

oś jest prostopadła do płaszczyzny rysunku i przechodzi przez wierzchołek trójkąta. Oznacza to, że dwie masy są odległe od niej o a, zaś odległość trzeciej jest zerowa:

[tex]I=m(a^2+a^2)=2ma^2\\I=2\cdot10^{-3}kg\cdot(0.02m)^2=8\cdot10^{-7}kgm^2[/tex]

b)

Oś znajduje się w płaszczyźnie rysunku, przechodzi przez jeden z wierzchołków trójkąta i jest równoległa do jednego z boków. Odległości mas od osi to:

[tex]r_1=h\\r_2=h\\r_3=0\\\textrm{gdzie}\\h=\frac{a\sqrt{3}}{2}\ \textrm{wysoko\'s\'c\ tr\'ojk\,ata}\\I=m(h^2+h^2)=2mh^2=\frac{2ma^2\cdot3}{4}=\frac{3}{2}ma^2\\I=\frac{3}{2}\cdot10^{-3}kg\cdot(0.02kg)^2=6\cdot10^{-7}kgm^2[/tex]

c)

Oś jest prostopadła do płaszczyzny rysunku i p przechodzi przez środek ciężkości trójkąta. Punkt przecięcia środkowych boków, dzieli je w stosunku 1:2

[tex]r_1=r_2=r_3=\frac{2}{3}h=\frac{a\sqrt{3}}{3}\\I=3mr^2=\frac{3ma^2\cdot3}{9}=ma^2\\I=10^{-3}kg\cdot (0.02m)^2=4\cdot10^{-7}kgm^2[/tex]

pozdrawiam