Mysza123
Rozwiązane

1.Ciąg (An)określony jest wzorem An=3n-7.Oblicz średnią arytmetyczną wzorów A2 A6 A8 A10
2.Zbadaj monotoniczność ciągu określonego wzorem An=n-4/n+4

3.Wiedząc,że L jest kątem ostrym.Oblicz wartość wyrażenia tgl+cos2/tgl-cosl gdy tgl=20/21



Odpowiedź :

Zadanie1
A(n) =3n-7
A(2)=3*2-7=-1

A(6)=3*6-7=11
A(8)=3*8-7=17
A(10)=3*10-7=23

Zatem Śr=(A(2)+A(6)+A(8)+A(10))/4=( -1+11+17+23)/4= 50/4=12,5

Zadanie2
A(n)=n-4/n+4

Tworzymy wyraz A(n+1)

A(n+1)=(n+1)-4/(n+1)+4= n-3/n+5

Tworzymy różnicę A(n+1)-A(n)

n-3/n+5 -n-4/n+4 = [(n-3)(n+4) -(n-4)(n+5)]/(n+5)(n+4) =
[ n²+n-12 -(n²+n-20)]/(n+5)(n+4)=
[ n²+n-12-n²-n+20]/(n+5)(n+4)=
8/(n+5)(n+4)

więc dla n>-4 ciąg malejący
dla n<-4 ciąg rosnący

Zadanie 3

tgL +cos2/tgL - cosL , gdzie tgL= 20/21

[(tgL)²+cos2-cosL*tgL]/tgL =
[(20/21)²+cos2 - cosL*20/21]/20/21=
[400/441+cos2-20cosL/21]/20/21=
20/21+20/21cos2-cosL