1.Marzena kupiła notesy 60 kartkowe, 32 kartkowe i 16 kartkowe. Notesów najcieńszych jest o 5 więcej niż 32 kartowych, a najgrubszych tyle ile 16 kartkowych i 32 kartkowych razem.Wszystkie notesy zawierają łącznie 1220 kartek.Ile notesów każdego rodzaju zakupiła Marzena?.Ułóż odpowiednie równanie i rozwiąż je.

2.Aby obliczyć, ile przekątnych posiada wielokąt, należy pomnożyć liczbę jego boków przez
liczbę o 3 mniejszą i otrzymany wynik podzielić przez 2.

a) Zapisz w postaci wyrażenia algebraicznego, ile przekątnych ma wielokąt o n bokach.

b) Oblicz, ile przekątnych ma trzydziestokąt.

3. Pięć lat temu Ania miała dwa razy mniej lat niż będzie miała za 5 lat. Ułóż równanie pozwalające
obliczyć obecny wiek Ani. Rozwiąż to równanie.

4.Jeden z boków prostokąta jest o 3 cm dłuższy, a drugi o 1 dm krótszy od boku pewnego kwadratu.
Pole prostokąta jest o 170 cm2 mniejsze od pola kwadratu. Oblicz obwód tego prostokąta.

5.Na przedstawienie przyszło d dorosłych i m dzieci, razem 123 osoby. Kiedy przed końcem
przedstawienia wyszedł jeden tata z dwójką 4-letnich synów, okazało się, że dzieci jest trzy razy
więcej niż dorosłych. Zapisz odpowiedni układ równań i oblicz, ilu dorosłych i ile dzieci przyszło
do teatru.

6.Hurtownia odzieży zakupiła 12 jednakowych zimowych płaszczy i 15 jednakowych kurtek
za łączną kwotę 13 500 zł. Płaszcz był o 180 zł droższy niż kurtka. Oblicz cenę zakupu przez
hurtownię płaszcza oraz cenę zakupu kurtki. Zapisz wszystkie obliczenia.

Jeżeli będzie trzeba dołożę drugie 50 punktów z góry dziękuje



Odpowiedź :

1.
x-notesy 16 kartkowe
y-notesy 32 kartkowe
z-notesy 60 kartkowe
Układamy równania
x-5=y
z=x+y
16*x+32*y+60*z=1220
Teraz za z w trzecim równaniu wstawiam z=x+y, a za y w trzecim równaniu wstawiam x+5=y wtedy mam
16*x+32*(x-5)+60*(x+x-5)=1220
16*x+32*x-32*5+60*2x-60*5=1220
16x+32x+120x=1220+300+160
168x=1680 /:168
x=10, zatem y=x-5=10-5=5 oraz
60z=1220-16x-32y=1220-16*10-32*5
60z=1220-160-160
60z=900 /:60
z=15
Odp. Zeszyty 16-kart.=10, zeszyty 32 kart.=5, zeszyty 60 kart.=15

2.
a)
[n*(n-3)]:2
b)
n=30
[n*(n-3)]:2=[30*(30-3)]:2=[30*27]:2=405.
Ma 405 przekątnych.

3.
x-wiek Ani
x-5=(x+5):2 /*2
2*(x-5)=x+5
2x-10=x+5
2x-x=5+10
x=15
Ania ma 15 lat

4.
x-długość boku kwadratu
x+3 - jeden z boków prostokąta
x-10 -drugi bok prostokąta
(x+3)(x-10) -pole prostokąta
x²-pole kwadratu
(x+3)(x-10)+170=x²
x²-10x+3x-30+170-x²=0
-7x+140=0
-7x=-140 /:(-7)
x=20
Zatem boki tego prostokąta mają długość 20+3=23 cm i 20-10=10 cm, więc obwód jest równy 2*23+2*10=46+20=66 cm

5.
d-ilość dorosłych
m-ilość dzieci
Układamy równania
d+m=123
3*(d-1)=m-2
Teraz z pierwszego wyliczamy m wtedy m=123-d i wstawiamy do drugiego
3d-3=123-d-2
3d+d=123+3-2
4d=124 /:4
d=31,
zatem dorosłych było 31 a dzieci m=123-31=92.

6.
x-cena płaszcza
y-cena kurtki
układamy równania
12x+15y=13500
x=y+180
Teraz drugie równanie wstawiamy do pierwszego i mamy
12(y+180)+15y=13500
12y+2160+15y=13500
12y+15y=13500-2160
27y=11340 /:27
y=420 zł
Zatem x=420+180=600 zł
Odp. Płaszcz kosztował 600 zł, a kurtka 420 zł.