Odpowiedź :
dane:
n_s = 273
n_l = 1000
d = 127 m
s = 22 m
m_l = 80 kg
m_s = 1000 kg
ρ = 1000 g/dm³ = 1000 000 g/m³ = 1000 kg/m³
szukane:
Δx = ?
M - masa samego promu
m₁ = M + n_l * m_l + n_s * m_s
m₂ = M
V = x * d * s
Warunek na pływanie, częściowo zanurzonego ciała:
Q = F_w
Q₁ = m₁g = (M + n_l * m_l + n_s * m_s)g
Q₂ = m₂g = Mg
F_w₁ = ρ * V₁ * g = ρ * x₁ * d * s * g
F_w₂ = ρ * V₂ * g = ρ * x₂ * d * s * g
Mamy więc układ równań
(M + n_l * m_l + n_s * m_s)g = ρ * x₁ * d * s * g
Mg = ρ * x₂ * d * s * g
M + n_l * m_l + n_s * m_s = ρ * x₁ * d * s
M = ρ * x₂ * d * s
x₁ = (M + n_l * m_l + n_s * m_s)/(ρ * d * s)
x₂ = M/(ρ * d * s)
Δx = x₁ - x₂ = (M + n_l * m_l + n_s * m_s)/(ρ * d * s) - M/(ρ * d * s) = (M + n_l * m_l + n_s * m_s - M)/(ρ * d * s) = (n_l * m_l + n_s * m_s)/(ρ * d * s)
Δx = x₁ - x₂ = (n_l * m_l + n_s * m_s)/(ρ * d * s) = (1000 * 80 kg + 273 * 1000 kg)/(1000 kg/m³ * 22 m * 127 m) = (1000 kg )(80 + 273)/(1000 kg/m * 22 * 127 ) = (80 + 273)/(1/m * 22 * 127) = 353/2794 m = 12,63 cm
n_s = 273
n_l = 1000
d = 127 m
s = 22 m
m_l = 80 kg
m_s = 1000 kg
ρ = 1000 g/dm³ = 1000 000 g/m³ = 1000 kg/m³
szukane:
Δx = ?
M - masa samego promu
m₁ = M + n_l * m_l + n_s * m_s
m₂ = M
V = x * d * s
Warunek na pływanie, częściowo zanurzonego ciała:
Q = F_w
Q₁ = m₁g = (M + n_l * m_l + n_s * m_s)g
Q₂ = m₂g = Mg
F_w₁ = ρ * V₁ * g = ρ * x₁ * d * s * g
F_w₂ = ρ * V₂ * g = ρ * x₂ * d * s * g
Mamy więc układ równań
(M + n_l * m_l + n_s * m_s)g = ρ * x₁ * d * s * g
Mg = ρ * x₂ * d * s * g
M + n_l * m_l + n_s * m_s = ρ * x₁ * d * s
M = ρ * x₂ * d * s
x₁ = (M + n_l * m_l + n_s * m_s)/(ρ * d * s)
x₂ = M/(ρ * d * s)
Δx = x₁ - x₂ = (M + n_l * m_l + n_s * m_s)/(ρ * d * s) - M/(ρ * d * s) = (M + n_l * m_l + n_s * m_s - M)/(ρ * d * s) = (n_l * m_l + n_s * m_s)/(ρ * d * s)
Δx = x₁ - x₂ = (n_l * m_l + n_s * m_s)/(ρ * d * s) = (1000 * 80 kg + 273 * 1000 kg)/(1000 kg/m³ * 22 m * 127 m) = (1000 kg )(80 + 273)/(1000 kg/m * 22 * 127 ) = (80 + 273)/(1/m * 22 * 127) = 353/2794 m = 12,63 cm